LjungBox¶
- class hyppo.time_series.LjungBox(max_lag=0)¶
Ljung-Box for Cross Correlation (CorrX) test statistic and p-value.
- Parameters
max_lag (
int
, default:0
) -- The maximum number of lags in the past to check dependence betweenx
and the shiftedy
. IfNone
, thenmax_lag=np.ceil(np.log(n))
. Also theM
hyperparmeter below.
Notes
The statistic can be derived as follows 1:
Let
and be and series respectively, which each contain observations of the series and . Similarly, let be the last observations of . Let be the first observations of . Let be the maximum lag hyperparameter. The cross distance correlation is,where $rho$ is the Pearson correlation coefficient. The p-value returned is calculated either via chi-squared distribution or using a permutation test.
References
- 1
Ronak Mehta, Jaewon Chung, Cencheng Shen, Ting Xu, and Joshua T. Vogelstein. Independence Testing for Multivariate Time Series. arXiv:1908.06486 [cs, stat], May 2020. arXiv:1908.06486.
Methods Summary
|
Helper function that calculates the Ljung-Box cross correlation test statistic. |
|
Calulates the time-series test test statistic and p-value. |
- LjungBox.statistic(x, y)¶
Helper function that calculates the Ljung-Box cross correlation test statistic.
- LjungBox.test(x, y, reps=1000, workers=1, auto=True, random_state=None)¶
Calulates the time-series test test statistic and p-value.
- Parameters
x,y (
ndarray
offloat
) -- Input data matrices.x
andy
must have the same number of samples. That is, the shapes must be(n, p)
and(n, q)
where n is the number of samples and p and q are the number of dimensions. Alternatively,x
andy
can be distance matrices, where the shapes must both be(n, n)
.reps (
int
, default:1000
) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int
, default:1
) -- The number of cores to parallelize the p-value computation over. Supply-1
to use all cores available to the Process.is_distsim (
bool
, default:False
) -- Whether or notx
andy
are input matrices.
- Returns